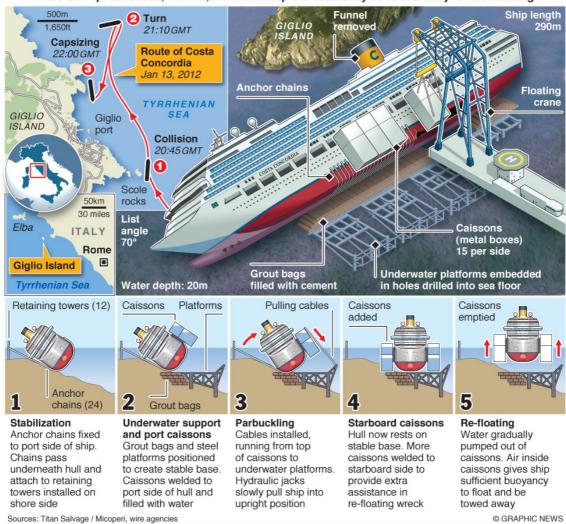

Marine Salvage 記事 40: MV Costa Concordia (2012.01.13)

陳彥宏*

^{*} 陳彥宏 Solomon CHEN,英國威爾斯大學海洋事務與國際運輸學博士,台灣海事安全與保安研究會理事長,新台灣國策智庫諮詢委員,國家運輸安全調查委員會諮詢委員,海洋委員會海巡艦隊分署海損評議審查會委員,海事仲裁人。曾任教於臺灣海洋大學、澳大利亞海事學院國家港埠與航運中心、高雄海洋科技大學。曾客座於上海交通大學凱原法學院國際海事研究中心、廈門大學南海研究、澳大利亞海事學院。EMAIL: solomonyhchen@gmail.com。



Plan to salvage Costa Concordia cruise ship

An international team of engineers is making an ambitious bid to set upright the wreck of the Costa Concordia cruise liner, which ran aground near an Italian island in 2012, killing 32 people. If the attempt succeeds, the 114,000-tonne ship will eventually be towed away for dismantling

一、事故背景與初期應變

- 事故背景(船隻與航線資訊)
 - ▶ 船舶概況:Costa Concordia 號是一艘懸掛義大利國旗的郵輪,船長為 Francesco Schettino。
 - ▶ 航程日期與目的地:該船於 2012 年 1 月 13 日從奇維塔韋基亞港 (Civitavecchia)啟航,前往薩沃納(Savona)。
 - ▶ 載客人數:船上總共載有 4229 人,包括 3206 名乘客(其中成人 2954 人, 12 歲以下兒童 200 人,3 歲以下嬰兒 52 人)和 1023 名船員。
 - ➤ 天氣條件:事故發生時,海上氣象條件有利,風速約 17 節,能見度部分 多雲,海況不佳(Rough Sea NE 4)。

● 導航失誤與撞擊

撞擊前的魯莽行為

- ▶ 非計畫的「致敬航行」: 船長 Schettino 決定執行一項未經授權、極度靠近 吉利奧島海岸線的「致敬航行」(sail-by salute)。
- ▶ 導航操作錯誤:船長在夜間、海岸照明不足的區域,以高達 15.5 至 16 節的高速航行。他還使用了不適當的海圖(使用了 1:100,000 的義大利水文研究所第 6 號海圖,而不是至少 1:50,000 的 122 號海圖或更詳細的 119 號海圖)。
- ▶ 分心因素:船長因駕駛台上存在非值班人員(包括旅館總監等)以及私人電話通話而分心。
- ➤ 轉向延遲與錯誤:船長承認他下達轉向命令太晚。在撞擊前的幾秒內, 舵手在執行船長「左滿舵」(hard to port)的命令時發生了錯誤,最初轉向 了右舷。儘管舵手隨後糾正了錯誤,但撞擊已無法避免。

撞擊與即時損害

- ▶ 撞擊時間與位置:船隻於當地時間 21:45:07 撞上吉利奧島附近的「斯科萊岩」(Scole Rocks)。
- 船體損傷:撞擊在船體左側劃開了一道長達53公尺(170英尺)的裂口。
- ➤ 致命性進水:撞擊導致船體底部以下五個相連的水密艙室(WTC 4, 5, 6, 7, 8) 立即進水。
 - ◆ 這五個艙室容納了船舶維持航行所需的大部分關鍵設備,包括推進 電動機(PEM)、主柴油發電機(DG)以及轉向和推進所需的設備。
 - ◆ 艙室 5 在短短幾分鐘內就完全淹沒。
 - ◆ 動力與控制喪失:由於關鍵設備被淹沒,船隻立即失去推進動力, 發生全船停電(black-out)。
 - ◆ 舵機失靈:由於失去電力供應,舵機被鎖定在右滿舵(starboard)的位置,無法操控。
- 駕駛台應變與緊急處理

駕駛台的混亂與隱瞞

- 總體根源:調查結果指出,人為因素是導致事故和後續應變失敗的根源。
- ➤ 延遲報告與謊報:船長未能主動向 SAR(搜救)當局發出警報,而是由岸上 乘客的親友撥打電話後,SAR 當局才開始聯繫船隻。
 - ◆ 在 22:12 首次聯繫時,駕駛台的官員(在船長的指示下)堅持稱船隻僅是電力中斷(black-out),情況仍在控制之中。
 - ◆ 直到 22:26:02, 船長才向 SAR 當局承認船體有裂口(breach)。
 - ◆ 直到 22:38,在利沃諾(Livorno)SAR 當局的堅持下,才發出遇險求救 (Distress)信號。

緊急程序執行不力

- ➤ 警報延遲:通用緊急警報(General Emergency Alarm)未在撞擊後立即啟動。 直到 22:33:26 才響起(撞擊後近 48 分鐘)。
- ➤ 棄船命令延遲:船長直到 22:54:10 才透過廣播系統下達「棄船」 (Abandon Ship)命令。
- ➤ 程序未遵循:船長沒有遵循船上安全管理系統(SMS)的相關程序,特別是「決策支持系統」和「損害管制計畫」(Damage Control Plan)。
- ▶ 船員混亂:由於缺乏來自駕駛台的清晰指令,船員在緊急情況管理中協調不足,且表現出不當的準備。一些乘客作證船員表現出震驚和困惑。
- ► 船長棄船:船長 Schettino 在船上仍有數百名乘客和船員時,於 00:34 向 SAR 當局報告他已在救生艇上。

● 後續漂流與搜救

船隻最終擱淺

- 幸運漂流:由於舵機鎖定在右舷,加上有利的東北風和水流作用,船隻 向南漂流後轉向,最終於大約 23:00 擱淺於吉利奧島岸邊。
- ▶ 橫傾加劇:船隻初始橫傾約 15°。到 24:00,船隻橫傾角度急劇增加至 40°。 在後續的救援行動中,船體傾斜達 80°。船體快速的傾斜使得許多救生艇 無法使用。

初期搜救行動(SAR)

- ➤ SAR 啟動:利沃諾(Livorno)海岸警衛隊的 MRSC(Maritime Rescue Sub-Centre) 在 22:16 已經下令巡邏艇前往協和號所在區域核實情況,比船長發出遇險信號(22:38)要早。
- ▶ 資源調動:義大利 SAR 組織調動了多個政府部門和私人公司的海空單位 參與救援,早期參與的救援資源包括 25 艘巡邏艇、14 艘船隻、4 艘拖船 和 8 架直升機。

- 成功撤離:救援行動持續到1月14日上午06:17宣告完成。共有4197人 獲救。約三分之二的人(約2927人)是利用協和號自身的救生設備(救生艇 和救生筏)撤離的。
- ➤ 貢獻者: SAR 當局的快速反應被認為是成功的關鍵因素,吉利奧島上的居民也提供了巨大的幫助和住所。
- ▶ 傷亡人數:事故最終導致32人死亡或失蹤。其中26名乘客和4名船員確認死亡。調查指出,受害者主要是由於船長應變的延遲導致的。

二、救撈決策與爭議

- 擱淺地點的環境敏感性與危險性
 - ▶ 救撈決策的首要考量因素是殘骸的所在位置 吉利奧島(Giglio Island)。
 - ▶ 自然保護區的威脅:該船擱淺的地點是一個環境極其敏感的區域。吉利 奧島周邊海域是著名的自然保護區,擁有令人驚嘆的珊瑚和珍稀海洋物 種,特別是一種獨特的巨型蛤蜊棲息在礁石底部。
 - ➤ 潛在的生態災難:協和號船艙內裝載了大量的物品,包括食物、化學品和重油(船內估計有約 2200 噸中間燃料油,以及 185 噸船用柴油和潤滑油)。如果船體在礁石上移動、崩塌或破裂,燃油洩漏將導致一場生態浩劫,並汙染整個托斯卡納海岸。
 - ▶ 船體不穩定性:該船重達約 100,000 噸,傾斜地坐落在水下斜坡上,船體下僅有兩道岩脊提供支撐。這兩道岩脊之間相距約 97 公尺。船隻平衡極為脆弱,如果平衡被破壞,船體可能會滑落到 70 公尺深的水下懸崖之中,這將使移除工作變得極其困難甚至不可能。
- 初期環境控制與燃油移除(Debunkering)
 - ▶ 防止洩漏是船主和當局的首要任務。
 - ➤ 合同授予:荷蘭的 Smit Salvage 公司和義大利的 Neri Spa 公司贏得了初期的污染控制和燃油移除(debunkering)合約。

- ▶ 油料種類:船上燃料是黏稠的中間燃料油,混合了燃氣油和重油,並含有對海洋生物有害的毒性化合物。
- ➤ 移除技術與穩定:團隊使用了熱抽(hot tapping)技術。潛水員鑽入油箱底部和頂部,安裝閥門並接上軟管。為了讓黏稠的燃油流動,需要對其進行加熱稀釋。在抽出燃油的同時,他們將海水注入油箱底部,以幫助穩定船體的平衡。
- ➤ 延誤與完成:燃油移除作業於 2012 年 2 月 12 日開始,耗時比原定的 28 天計畫要長。直到 2012 年 3 月 24 日,所有 17 個燃料箱的燃油才被清空, 暫時解除了即時的環境洩漏危機。

● 殘骸移除方案的招標與核心爭議

- ➤ 在燃油移除後,船主 Costa Cruises 組織了一次國際招標,邀請業界提出殘骸移除方案。
- ▶ 競標者:共有8個救撈業者提交了報價和計畫。
- ➤ 決策委員會:評選委員會由 Costa 和 Carnival(船主)的專家、救撈顧問、環境機構和船舶製造技術專家組成。
- 核心目標:評估的重點是技術可行性、確保最大程度的安全、將對環境、 旅遊和吉利奧島經濟的影響降到最低。

爭議:整體移除 vs.就地切割

- ➤ 决策的中心爭議在於移除的方式:是將船隻整體移除(whole piece),還是 在現場將船體切割成小塊。
- ▶ 反對切割的原因(環境考量):雖然切割是一個既定的方法,但工程師們強烈反對此方案。因為協和號是一艘載有 4000 多人的郵輪,船內充滿了乘客的行李、床墊、食物以及其他許多可能造成汙染的碎片。如果在現場切割,這些大量物質將會漂浮到海中,毀壞這個水下避風港。

- ➤ 唯一主張整體移除的方案:最終,美國 Titan Salvage 公司和義大利的 Micoperi 公司的聯合團隊贏得合同,他們提出了將殘骸完整扶正並整體拖離的方案。
- ▶ 合同與預算:該合同於 2012 年 4 月授予,估計價值為 4.5 億美元,最初 預計作業將在 12 個月內完成,成本約為 3 億美元。

● 救撈團隊與核心領導人

- ➤ Titan/Micoperi 聯合體: Titan Salvage 是總部位於佛羅里達的 Crowley Maritime Corporation 子公司,擁有豐富的救撈經驗。Micoperi 是一家義大利離岸服務和工程公司,在地中海擁有重型起重資產。
- 教撈長(Salvage Master):南非籍救撈長 Nick Sloan 被任命為整個扶正計畫 (Parbuckling Project)的總指揮。
- ➤ 計畫難度: Sloan 擁有 30 多年救撈經驗,但他表示,協和號的工程是他職業生涯中最大、最複雜的救撈作業。他形容這項工作是「將你以前做過的一切結合起來,然後再放大(extrapolated)」。
- ➤ 技術爭議: Sloan 採用的核心技術是「扶正(Parbuckling)」,這是一種古老的技術,曾在二戰期間對 USS Oklahoma 戰艦進行扶正。然而,協和號的船體結構比戰艦脆弱得多,有結構崩塌的風險。當時甚至有一個網站名為「為什麼協和號不能扶正(Why the Concordia cannot be parbuckled)」。

三、救撈與清理作業

- 初期環境保護與燃油移除(Debunkering):事故發生後,首要任務是避免擱淺 地點(吉利奧島附近)發生生態災難,因為船內裝有大量燃油。
 - ▶ 污染物與風險:協和號載有約 2,380 噸重油(中間燃料油,通常是燃氣油 與重油的混合物)和 185 噸船用柴油與潤滑油。這些燃料含有對海洋生物 有害的毒性化合物。
 - ➤ 承包與啟動:荷蘭的 Smit International 公司與義大利的 NERI SpA 公司共同 承包了初期的燃油移除作業。作業於 2012 年 2 月 12 日開始,期間曾因惡 劣天氣數週延遲。

▶ 「熱抽」技術(Hot Tapping):

- ◆ 由於油箱處於水下且油料黏稠,團隊採用了「熱抽」技術。
- ◆ 潛水員在燃油箱的頂部和底部鑽孔並安裝控制閥。
- ◆ 油料被加熱以降低黏度,使其更容易流動。
- ◆ 當燃油從頂部軟管抽出時,海水同時從底部閥門注入。這項技術確保在移除油料的同時,維持油箱的負浮力,從而避免影響船體在礁石上的平衡。
- ➤ 作業完成:移除作業首先清空了包含船隻 84%燃油的 15 個油箱。隨後, 潛水員在船體上切割孔洞以進入機艙。總計 2,042.5 立方米(mc)的油料在 2012 年 3 月 24 日前被回收。
- 穩定化與扶正準備:移除燃油後,救撈團隊開始執行將船體扶正(Parbuckling) 的準備工作,這是整個項目中最複雜的環節。
 - ▶ 船體穩定:船體必須被固定住,以防止其滑落至70公尺深的懸崖下。
 - ◆ 團隊在岸上安裝了 11 個錨塊,並延伸出 16 條重型纜繩(hold-back lines),將船體拉緊,固定在斜坡上。
 - ◆ 為了在緊急應變中工作安全,救撈人員參加了登山課程。
 - ▶ 人工平台(Submarine Platforms):
 - ◆ 為了在扶正時承托船體,團隊在船體下方(靠近深水側)建造了一個由 鋼鐵和水泥構成的人工平台。
 - ◆ 平台由六個巨大鋼製模塊組成,總重量達 5,000 噸鋼材,面積有一個 足球場大。
 - ◆ 在花崗岩海底鑽孔來錨定平台樁腿極為困難。潛水員必須將 2 公尺 直徑、12 公尺深的孔洞鑽入花崗岩山體。安裝公差極小,誤差必須 小於 1%。

➤ 灌漿與人工床墊(Grouting):

- ◆ 團隊將 20,000 噸左右的的水泥(灌漿)注入尼龍袋(grout bags),在船底和平台之間建造了一個巨大的水泥床墊/人工礁石。
- ◆ 灌漿工程需要 15,000 多次獨立潛水。潛水員還安裝了特殊的支撐袋 (被稱為「KitKats」),用來支撐龍骨。

▶ 浮力箱安裝(左舷):

- ◆ 在船體左舷(露出水面的一側)安裝了 15 個巨大的鋼製浮力箱 (sponsons),提供了 66,000 立方公尺的浮力。
- ◆ 這些浮力箱是扶正時的「救生衣」,利用其重量和水下浮力來輔助旋 轉。
- ◆ 由於空間限制,浮力箱之間的焊接公差必須極小,僅有 38 毫米至 48 毫米。
- ▶ 船艏支撐:由於船艏懸空在水下懸崖邊緣,團隊設計了特殊的「水泡姊妹」(Blister Tanks)來像「頸部支架」一樣支撐船艏,防止其在旋轉時扭曲或斷裂。
- 扶正作業(Parbuckling):「扶正計畫」(Parbuckling Project)是將協和號拉回垂直 位置的核心操作,這是針對如此大規模、結構脆弱的客輪殘骸首次嘗試。
 - ▶ 時間與費用:扶正作業於 2013 年 9 月 16 日開始。截至此時,救撈成本已 超過 6 億歐元(約 8 億美元)。

▶ 主要設備:

- ◆ 拉索千斤頂(Strand Jacks):船體上方安裝了 36 個液壓拉索千斤頂, 它們通過拉動與岸上平台相連的鋼纜。
- ◆ 總共使用了124台拉索千斤頂。
- ◆ 拉索千斤頂提供了 13,000 噸的拉力(或 24,000 噸的實際拉力)。

▶ 旋轉過程:

- ◆ 「脫離力」(Breakout Force):由於船體已在岩石上「塑形」並下沉了約3公尺,將其從礁石上撕開需要巨大的「脫離力」。原預計為6,000噸,但實際啟動力量達到了6,800噸至6,900噸。
- ◆ 臨界角度:拉索千斤頂完成了前 25 度的旋轉。
- ◆ 一旦超過 24 度的臨界角度,團隊打開左舷浮力箱的閥門,讓海水灌 入,此時浮力箱的重量和重力接手,加速了船體的旋轉。
- ▶ 結果:整個扶正過程耗時 19 小時,於 2013 年 9 月 17 日凌晨完成。船體成功被扶正並穩固地落在水下平台上。在扶正過程中,船體的最大偏轉度僅為四分之一度。
- 重新浮起與拖航準備:扶正後,殘骸移除進入最後階段,準備重新浮起並拖 至拆解地點。
 - 船體損壞檢視與清理:扶正後,團隊檢查了受損的右舷。右舷因在礁石上受壓 20 個月而嚴重擠壓和磨損。在將船隻移動之前,船內被淹沒的部分(如走道上的碎片)需要進行蒸汽清洗和燻蒸,以清除可能有害的空氣懸浮粒子。
 - ▶ 安裝右舷浮力箱:
 - ◆ 團隊開始在受損的右舷安裝額外的 15 個浮力箱。
 - ◆ 由於右舷損壞嚴重,團隊必須安裝重型鋼樑和緩衝器,以加固船體 並創建平整的表面來對接浮力箱,從而確保提升力的有效傳遞。
 - ◆ 這項工作持續了三個月。
 - ▶ 潛水員意外:在 2014 年 2 月 1 日,一名在右舷焊接浮力箱的潛水員被金屬板割傷腿部,最終因傷勢過重而死亡。
 - ▶ 重新浮起(Refloating):

- ◆ 重新浮起作業於 2014 年 7 月 14 日開始。
- ◆ 團隊向所有 30 個浮力箱注入空氣,將水排出,利用總計 66,000 噸的 浮力將船體抬升。
- ◆ 船體被控制以每次浮起一個甲板的速度緩慢抬升,以確保甲板上的 滯留水流出,維持穩定性。
- ◆ 這項提升作業持續了 9 天,直到船體浮起,甲板三層(Deck 3)高於水線。
- ➤ 拖離:在浮起後,團隊必須進行一次「風險拉離操作」(risky pulloff maneuver),將船體拉離平台 30 公尺到更深的水域。協和號最終於 2014 年 7 月 23 日被拖離吉利奧島。整個救撈項目總共使用了 33,000 噸鋼材進行結構搭建,總成本估計達到 12 億美元。

四、殘骸處置

- 浮起與拖航準備(Refloating and Tow Preparation):在扶正作業(Parbuckling)完成 並將船體穩定地置於人工平台之後,下一個關鍵步驟是使船體重新浮起。
 - ➤ 右舷浮力箱安裝:團隊在受損的右舷側安裝了額外的浮力箱(sponsons), 以提供足夠的浮力來平衡和抬升船體。
 - ◆ 在安裝右舷浮力箱時,團隊必須在水下及受損區域內部安裝重型鋼 樑和緩衝器,以加固船體並創建平坦表面來對接浮力箱。
 - ▶ 潛水員傷亡:在 2014 年 2 月 1 日,一名西班牙潛水員在焊接右舷浮力箱時,腿部被金屬板割傷,被救上水面後因傷勢過重死亡。這是整個救撈作業中唯一的死亡事件。
 - ▶ 重新浮起:重新浮起作業於 2014 年 7 月 14 日開始。工程師們利用 30 個 浮力箱(sponsons),排出箱內的水並注入空氣,利用總共約 66,000 噸的浮力抬升船體。
 - ◆ 每個浮力箱的排水量約相當於 2.5 個奧運標準泳池,總計提供了約 75 個奧運標準泳池的浮力。

- ◆ 船體被抬離平台數公尺後,被拖離海岸30公尺至更深水域。
- ▶ 最終成本截至船體浮起,整個救撈工程的總成本估計已超過 12 億美元,或約 8 億美元,遠高於該船 9 億美元的建造成本。
- 最終航程與目的地:移除殘骸的地點是經過國際招標和義大利政府批准的。
 - ▶ 拆解地點選擇: 2013 年 12 月,船東 Costa Cruises 向 12 家公司發出招標, 地點遍及法國、義大利、挪威、十耳其和英國。
 - ➤ 義大利政府批准:義大利政府於 2014 年 6 月 30 日批准了 Costa Cruises 的 決定,將船隻運至熱那亞(Genoa)進行拆解。拆解工作由義大利公司 Saipem、Mariotti 和 San Giorgio 執行。
 - ► 拖航開始:協和號於 2014 年 7 月 23 日啟程前往熱那亞,展開其為期四天的最後航程。
 - ▶ 抵達熱那亞:殘骸於 2014 年 7 月 27 日抵達熱那亞港口。
- 拆解、回收與失蹤者尋獲:殘骸的拆解旨在最大限度地回收材料並確保環境 安全。
 - ➤ 拆解啟動與目標:拆解和回收工作於 2014 年 10 月 16 日開始。首要目標 是從水線以上的甲板開始,剝離並移除船上的所有家具、配件和內部結 構,以減輕船體的吃水深度。
 - ◆ 拆解預計耗資 1.15 億美元。
 - ▶ 船體轉移: 2015 年 5 月 11 日,船體被拖曳約 10 英里至熱那亞的 Superbacino 碼頭,在那裡上層甲板和上層結構被進一步拆除。
 - ◆ 到了 2016 年 8 月,剩餘的外部結構和浮力箱被移除。
 - ◆ 在 2016 年 9 月,協和號的船殼被轉移到熱那亞 4 號乾塢進行最終拆除。

- ▶ 最終回收:最終的拆解和回收工作於 2017 年 7 月完成。超過 53,000 噸的 鋼鐵被回收。 Costa Concordia 整體材料皆被回收。
- ▶ 最後失蹤者:在拆解過程中,最後一名失蹤的船員 Russel Rebello(一名印度籍服務員)的遺體於 2014 年 11 月 3 日在殘骸中被發現。這距事故發生已將近兩年。最終確認的遇難人數為 32 人。
- 事故現場的環境修復(Site Remediation):即使殘骸被移除,吉利奧島現場的環境清理工作仍需持續。
 - ▶ 修復責任:在殘骸被拖走之後, Costa Crociere 委託 Micoperi 負責救撈現場的環境修復工作(稱為 WP9 階段)。
 - ▶ 修復內容與成本:該項目旨在將現場恢復到原始狀態。主要活動包括清理海底、移除錨塊、移除灌漿袋(grout bags)以及移除平台。
 - ◆ 最初為該修復項目分配了8500萬美元的預算。
 - ▶ 時間線:修復工程預計在 2014 年底開始,需時約 15 個月。然而,該項目持續至 2018 年 5 月仍在進行中。
 - ▶ 殘餘物:在船體移除後,造成船體受損的岩石(重達約70噸,或96噸)也 被移走。有人建議將這些岩石連同紀念遇難者的牌匾一起放回海底。

五、關鍵技術與挑戰

- 挑戰:遊輪的致命弱點與懸崖邊的平衡術
 - ▶ 協和號擱淺的位置,簡直是工程師的噩夢。這是一艘體積龐大(重量超過 100,000 噸),比鐵達尼號大上一倍的「水上豪華飯店」,卻以一種極其不 穩定的姿態,斜躺在一處海洋保護區的懸崖邊。
 - ➤ 結構脆弱的巨獸:郵輪的船體設計,特別是上層結構,多使用輕質材料以保持低重心。這使得協和號的結構遠比二戰時期的戰艦(如:Oklahoma號)脆弱得多,無法承受傳統救撈中的粗暴拉扯。船隻在兩個岩脊上保持微妙平衡,這兩塊岩脊相距 97 公尺。

- ▶ 70 米深淵的威脅:船體緊鄰一個 70 公尺深(230 英尺)的水下懸崖。只要船體稍微移動,或受到強烈風暴衝擊(事實上,2012 年萬聖節風暴曾導致船體移動了 2 公尺),它就可能滑落深淵,屆時移除將變得極度困難,甚至不可能。
- ➤ 環境與污染的零容忍:由於擱淺地點是托斯卡納群島國家公園和鯨魚保護區,且船上載有大量重油和船艙內的雜物(包括乘客行李、床墊、食物等),決定必須採取整體移除(in one piece)方案,以避免在現場切割殘骸導致大規模的生態汗染。
- 技術:前所未有的工程壯舉
 - ➤ 為應對這些極端挑戰,救撈團隊(由 Titan Salvage 和 Micoperi 組成)採用了 一系列創新且高精度的技術,將看似不可能的任務化為現實。
 - ▶ 扶正技術 (Parbuckling) 扭轉乾坤的核心戰術
 - ◆ 「扶正」是一種古老的航海術語,指將傾覆的船隻拉回正位。但這 是史上首次對如此巨大的現代客輪進行此項操作。
 - ◆ 液壓千斤頂(Strand Jacks): 這些是提供巨大力量的「液壓肌肉」。總共使用了124台液壓千斤頂,在船體上方安裝了36個(藍色拉力機),提供約13,000噸的垂直拉力,或24,000噸的實際拉力。
 - ◆ 「脫離力」的考驗(Breakout Force):由於船體已在岩石上深陷約3公尺,將其「撕裂」出岩床需要巨大的力量。團隊原預計為6,000噸,但實際的啟動力量高達6,800至6,900噸。救撈總指揮Nick Sloan形容船隻在6,800噸的拉力下終於開始移動,整個過程充滿了緊張的沉默。
 - ◆ 重力接手:一旦船體旋轉超過 25 度的臨界角度,團隊就會向左舷的 浮力箱注水,讓重力接管,使船隻加速滾動至垂直位置。
 - ▶ 海底「手術台」與「救生衣」
 - ◆ 為了讓協和號平穩地回到垂直位置,並準備浮起,團隊打造了兩大輔助系統:

◆ 人工平台與水泥床墊:

- ✓ 在船體下方(靠近深水側)建造了 6 個巨大的鋼製平台,總共使用 了 33,000 噸鋼材(足以建造兩艘超級油輪)。
- ✓ 在船體下方空隙中,潛水員安裝了尼龍袋,並注入了 23,000 噸 灌漿水泥,形成了巨大的「人工床墊」,以提供支撐並確保船體 在旋轉時不會繼續滾動。

◆ 浮力箱(Sponsons) - 11 層樓高的臂環:

- ✓ 這些浮力箱如同船隻的「救生衣」,最高的達 11 層樓高(33 公尺高)。
- ✓ 總共安裝了 30 個浮力箱,共提供 66,000 立方公尺的淨浮力,足以平衡船體並最終浮起船隻。
- ✓ 毫米級公差:左舷浮力箱必須以極小的公差安裝-38毫米,這 使得在惡劣海況下的安裝成為一項極其精密的挑戰。

▶ 船頭「頸托」的創新(Blister Tanks)

- ◆ 危機:工程師發現,船頭懸掛在懸崖邊,在扶正過程中極有可能扭曲或斷裂。
- ◆ 解決方案:團隊設計了特殊的「水泡姊妹」或「水泡箱」(Blister Tanks)。這些巨大的結構被塑造成完全貼合船頭曲線的「頸托」。它們必須先注水下潛,然後「輕柔地滑入」船頭下方,以支撐船體最脆弱的部位。

▶ 數位雙生與海底監測

◆ 有限元素分析(FEM Analysis):在實際操作前,漢堡的專家們建立了 包含 100 萬個點的船體參考模型,進行了有限元素分析,這是史上 最大規模的結構分析模型,用於精確模擬船體在拉力下的受壓和形 變情況。

- ◆ 水下機器人(ROVs):在整個過程中,水下攝影機和遠端操作無人載具 (ROVs)不斷監測船體的狀況和工程進度。這使得 Nick Sloan 等人在指揮中心就能即時掌握船體是否出現裂縫,或是否在滾動時偏離目標。
- ◆ 潛水員的英勇:超過 15,000 次個人潛水和超過 22,000 次潛水總數, 潛水員在 45 公尺深的海底花崗岩上鑽孔,並安裝了所有基礎設施, 這是救撈作業中最大的潛水項目之一。
- 關鍵設備故障:事故後的電力失控
 - ▶ 除了救撈工程本身的複雜性,事故發生時船上關鍵設備的功能失靈,也 凸顯了大型客輪的重大設計缺陷。
 - ◆ 五個水密艙室的致命衝擊:撞擊導致五個相連的水密艙室立即進水, 這遠超船舶設計的生存標準(通常為兩個相連艙室)。
 - ◆ 關鍵設備癱瘓:這些進水艙室中設有船舶大部分的重要設備,包括 推進電動機(PEM)、主柴油發電機(DDGG),導致推進力與總服務電力 瞬間喪失(黑屏)。
 - ◆ 應急發電機的掙扎:應急柴油發電機(EDG)雖然啟動,但由於電力生產/分配網路的高度複雜性和巨大的進水衝擊,導致其與應急電板(ES)的連接斷斷續續。
 - ◆ 「螺絲起子」的緊急接通:船員為了讓 EDG 正常工作,必須手動操作開關(Breaker 901)。一名電氣官員甚至使用螺絲起子強行堵住內部機械互連刀片,以「強制模式」連接應急電源,儘管如此,系統仍因冷卻風扇損壞引發過熱警報而反覆停止。
 - ◆ 總而言之,協和號的移除是一項賭上一切的工程,融合了古老救撈智慧(扶正)與尖端技術(FEM、液壓千斤頂、客製化浮力箱),最終以人類在極限環境下創造的精確和毅力取得了勝利。

六、成果與影響

● 悲劇性的人命損失與救援成果

- ▶ 儘管救撈工程取得了最終的成功,但此次事故的起因 人為錯誤 造成了不可逆轉的悲劇。
- ▶ 最終傷亡數字:事故造成了32人死亡或失蹤。死者包括27名乘客和5名 船員。
- ▶ 救撈期間的犧牲:在複雜的船體移除作業中,還有 1 名救撈潛水員因傷 勢過重死亡。
- ▶ 尋獲最後遺體:船體在熱那亞港拆解時,最後一名失蹤的船員 Russel Rebello 的遺體於 2014 年 11 月 3 日被發現。
- ▶ 搜救成功:義大利 SAR(搜救)當局在事故後迅速反應,最終救援了 4197 人。 約三分之二(2/3)的人是利用協和號自身的救生設備撤離的。救援單位的 專業和直覺(他們因乘客電話而非船長警報啟動)避免了更嚴重的後果。

● 巨大的經濟成本與代價

- ▶ 總體經濟損失:協和號郵輪最初的建造成本約為 6 億美元。然而,包括 受害者賠償、浮起、拖航及拆解在內,這場災難的總成本估計高達 20 億 美元,是該船建造成本的三倍多。
- ▶ 救撈費用:僅將船體扶正和浮起的工程成本就已超過8億美元(或12億美元),遠超最初預計的3億美元。
- ▶ 拆解與回收:拆解船體預計耗資 1.15 億美元。

● 殘骸處置與環境回收的成果

- ▶ 整體回收成功:協和號於 2014 年 7 月 27 日抵達熱那亞港口進行最終拆解。拆解工作於 2017 年 7 月 7 日完成。船上所有的材料都得到了回收。
- 環境保護優先:救撈團隊成功地整體移除了殘骸,從而避免了在環境敏 感區(托斯卡納群島國家公園和鯨魚保護區)進行現場切割所導致的大規模 生態災難。

- ➤ 現場修復:在船體被拖走後,吉利奧島的救撈場地進入海底復原階段 (WP9 階段)。該項目旨在清除海底的鋼鐵、灌漿袋和平台,並恢復原貌。
- 航運安全規範的深遠影響與改革
 - ➤ 調查報告明確指出,Costa Concordia 號事故的根本原因在於人為因素 (human element),包括船長魯莽的行為和緊急情況管理的失誤。儘管該船在啟航前符合所有適用的 SOLAS 法規,但這場事故催生了多項強制性的安全改革:
 - ➤ 駕駛台管理與操作規範(Bridge Management & Operational Procedures):
 - ◆ 人為因素緩解:建議通過教育、培訓和技術來減輕人為因素的影響。
 - ◆ 駕駛台團隊重審:建議對駕駛台團隊的組織和角色進行全面討論, 並提供工具來確保管理結構能夠應對各種情況(普通、臨界、緊急)。
 - ◆ 強制培訓:建議強制要求在換證時進行駕駛台團隊管理(Bridge Team Management)課程培訓。
 - ◆ 禁止無關人員:建議明確禁止非指揮或導航人員在航行或操縱過程 中出現在駕駛台上。
 - ◆ 緊急決策:建議推動集體決策和「大聲思考」("thinking aloud")的態度。
 - ▶ 船隻設計與穩性(Ship Design and Stability):
 - ◆ 雙層船殼:建議考慮為包含推進和電力生產關鍵設備的水密艙室 (WTCs)設置雙層船殼保護。
 - ◆ 關鍵設備冗餘:建議增強應急發電機(EDG)和電力分配系統的冗餘性。
 - ◆ 穩定性計算:建議提供電腦化的穩定性支持系統,以便船長在浸水 情況下能獲得更準確的資訊。
 - ▶ 應急與撤離(Emergency and Evacuation):

- ◆ 強制演習:船公司在事故後修改了程序,要求客人在開航前必須完成安全演習。國際海事組織(IMO)也推動了更嚴格的規定,例如要求在開航前進行強制性的棄船演習。
- ◆ 救生衣位置:建議增加救生衣的放置位置,以便乘客不必返回客艙 取用。
- ◆ 救生艇放送:建議審查救生艇的放送系統,以確保在船體嚴重橫傾 時仍能放送。

● 救撈技術的里程碑與遺產

- ▶ 史上最大救撈:協和號的扶正(Parbuckling)和移除被公認為海事史上最大的救撈作業。
- ▶ 技術創新:該項目是首次對如此規模和結構脆弱的客輪進行整體扶正嘗試,極大地推動了救撈技術的發展。
- ➤ 核心技術應用:工程中使用了 124 台液壓拉索千斤頂,在水下安裝了 30 個巨大的浮力箱(sponsons),並利用有限元素分析(FEM)建立了包含 94,000 個結構組件的精確模型來預測船體應力。

